The Possibility of Detrimental Effects on Soil–Structure Interaction in Seismic Design Due to a Shift in System Frequency

Author:

Tao Weifeng1,Fu Jia1,Li Yugang1

Affiliation:

1. Department of Civil Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Soil–structure interaction (SSI) leads to a modification in the dynamic properties of structure, but due to the complexity of analysis, it is traditionally assumed in seismic designs that the structure is fixed-supported on the ground, which brings about potential risks to the seismic performances of structure. The study works on the possibility of SSI having detrimental effects by comparing the dynamic responses of the SSI system to a fixed-base structure, and presents charts for an evaluation of the system frequency of SSI for the purpose of engineering practice. In order to reveal the physical nature, the SSI model is reduced to its simplest form, consisting of a SDOF oscillator, a three-dimensional rectangular foundation, and a multi-layered half-space. The energy dissipation in the soil is achieved by foundation impedances and the substructure method. Previously, the foundation impedances are usually acquired by two-dimensional or axisymmetric three-dimensional models in uniform half-space to avoid the high cost of the more realistic, fully 3D models, while a high-precision indirect boundary element method is employed, combined with the non-singular Green’s functions of distributed loads to calculate the foundation impedances. Although SSI dampens the peak amplitude of structure response in the frequency domain, case studies on four buildings’ responses to 42 earthquakes in the time history show a possibility of 15–20% that SSI amplifies the dynamic responses of structures, such as the maximum and the mean values in the time history, depending on the properties of the structures and the site, as well as the frequency component of incident waves.

Funder

Provincial Natural Science Foundation of Shaanxi

National Natural Science Foundation of China

Fundamental Research Funds for Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3