A Route to Selective Arsenate Adsorption in Phosphate Solutions via Ternary Metal Biopolymer Composites

Author:

Bui Nam T.1ORCID,Steiger Bernd G. K.1ORCID,Wilson Lee D.1ORCID

Affiliation:

1. Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada

Abstract

With the increased need for improved adsorbents for efficient water treatment, sodium alginate (NaAlg) and chitosan (Chi) represent promising platform biopolymers for the preparation of biocomposite adsorbents for the effective removal of waterborne oxyanion (arsenate (Asi) and orthophosphate (Pi)) contaminants. The TMCs were characterized by spectroscopy (infrared (IR), SEM with an energy dispersive X-ray (SEM-EDX)), point-of-zero-charge (PZC) measurements, and dye adsorption by employing p-nitrophenol at variable pH. Based on dye adsorption results, the adsorbent surface area (SA) was 271 m2/g for Al-TMC, 286 m2/g for Fe-TMC, and 311 m2/g for Cu-TMC. This indicates the role of adsorbent pore structure and swelling in water. Further, the role of either aluminum (Al), copper (Cu), or iron (Fe) for the preparation of TMCs for the selective Asi removal in the presence of Pi as a competitor anion was evaluated. While Al, Fe, and Cu coordinate to the biopolymer framework at C=O sites, only Fe coordinates to –NH2 sites. While Al coordinated via Al-O and interfacial hydroxy groups, Cu showed the formation of Cu2(OH)3NO3 in contrast to Fe, which observed FeOOH formation. Adsorption of Asi was highest for Al-TMC (80 mg/g), followed by Fe-TMC (77 mg/g) and Cu-TMC (31 mg/g). Adsorption of Pi was highest for Al-TMC (93 mg/g), followed by Fe-TMC (66 mg/g) and Cu-TMC (17 mg/g). While Al-TMC showed the highest adsorption capacity overall, only Fe-TMC (followed by Cu-TMC) showed strong arsenate selectivity over orthophosphate. The selectivity toward Asi in presence of Pi was determined and the binary separation factor (αt/c) and the selectivity coefficient (βt) were calculated, where Cu-TMC (αt/c = 6.1; βt = 4.4) and Fe-TMC (αt/c = 8.3; βt = 5.0) exceeded Al-TMC (αt/c = 1.5; βt = 1.2). This work contributes to the field of oxyanion-selective adsorbents via judicious selection of the metal salt precursor during the synthetic design of the ternary biocomposite systems, as demonstrated herein.

Funder

the Government of Canada through the Natural Sciences and Engineering Research Council of Canada

The Saskatchewan Structural Sciences Centre

the Canada Foundation for Innovation, NSERC

the University of Saskatchewan to support research at the SSSC

the MDPI editorial office of Applied Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3