A Methodology for Modeling a Multi-Dimensional Joint Distribution of Parameters Based on Small-Sample Data, and Its Application in High Rockfill Dams

Author:

Guo Qinqin1,Huang Huibao2,Lu Xiang2,Chen Jiankang2ORCID,Zhang Xiaoshuang1,Zhao Zhiyi1

Affiliation:

1. School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

2. State Laboratory of Hydraulic and Mountain River Engineering, College of Water Resources & Hydropower, Sichuan University, Chengdu 610065, China

Abstract

The composition of high rockfill dam materials is complex, and the mechanical parameters are uncertain and correlated in unknown ways due to the influences of the environment and construction, leading to complex deformation mechanisms in the dam–foundation system. Statistical characteristics of material parameters are the basis for deformation and stress analysis of high core rockfill dams, and using an inaccurate distribution model may result in erroneous analysis results. Furthermore, empirically evaluated distribution types of parameters are susceptible to the influence of small sample sizes, which are common in the statistics of geotechnical engineering. Therefore, proposing a multi-dimensional joint distribution model for parameters based on small-sample data is of great importance. This study determined the interval estimation values of Duncan–Chang E-B model parameters—such as the mean value and coefficient of variation for the core wall, rockfill, and overburden materials—using parameter statistical analysis, bootstrap sampling methods, and Akaike information criterion (AIC) optimization. Additionally, the marginal distribution types of each parameter were identified. Subsequently, a multi-dimensional joint distribution model for Duncan–Chang model parameters was constructed based on the multi-dimensional nonlinear correlation analysis of parameters and the Copula function theory. The application results for the PB dam demonstrate that joint sampling can effectively reflect the inherent correlation laws of material parameters, and that the results for stress and deformation are reasonable, leading to a sound evaluation of the cracking risk in the core wall of high core rockfill dams.

Funder

Fundamental Research Program of Shanxi Province

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3