Affiliation:
1. School of Earth Resources, China University of Geosciences, Wuhan 430074, China
2. Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China
Abstract
The shale oil reservoirs of the Lower Permian Fengcheng Formation in the northern Mahu Sag are promising targets. However, complex geology and strong heterogeneity in the area pose great difficulties in the numerical simulation of in situ stress fields, which have for a long time been poorly understood. This study provides a systematic and accurate 3D in situ stress numerical simulation workflow based on comprehensive data. In this research, optimized ant tracking was applied to construct refined geological models. Acoustic impedance is taken as what we refer to as “hard” data to reflect variations in geomechanical parameters. Logging and mechanical tests were taken as “soft” data to restrict the numerical range of the geomechanical parameters. With the integration of “hard” data and “soft” data, accurate 3D geomechanical models can be attained. The finite element method was ultimately utilized to simulate the 3D in situ stress field of the Fengcheng Formation. Numerical simulation results reveal that the stress state of the Fengcheng Formation is quite complicated. The magnitude of the horizontal principal stress, horizontal stress difference and horizontal stress difference coefficient are correlated with burial depth, faults, and geomechanical parameters to some degree. The parameter Aφ was introduced in this research to better analyze the stress regime, the result of which demonstrates that the main stress regime in the study region is the reverse faulting stress regime. By evaluating the fault stability, it was found that there is basically no possibility of slippage regarding the faults in northern Mahu Sag. The results of this research provide evidence for well deployment optimization, borehole stability, and so on, all of which are of great significance in hydrocarbon exploration and exploitation.
Funder
National Major Science and Technology Projects of China