Effects of Land-Use Type and Salinity on Soil Carbon Mineralization in Coastal Areas of Northern Jiangsu Province

Author:

Yang Xu12,Chu Dongsheng3,Hu Haibo12,Deng Wenbin1,Chen Jianyu1,Guo Shaojun1

Affiliation:

1. Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

2. National Positional Observatory for the Changjiang River Delta Forest Ecosystem, Nanjing 210037, China

3. Dafeng District Forestry Farm, Yangcheng 224100, China

Abstract

Sea level rise due to glacier melting caused by climate warming is a major global challenge, but the mechanism of the effect of salinity on soil carbon (C) mineralization in different land types is not clear. The pathways by which salinity indirectly affects soil carbon mineralization rates need to be investigated. Whether or not the response mode is consistent among different land-use types, as well as the intrinsic links and interactions between soil microbial resource limitation, environmental stress, microbial extracellular enzyme activity, and soil carbon mineralization, remain to be demonstrated. In this paper, three typical land-use types (wetland, forest, and agroforestry) were selected, and different salinity levels (0‰, 3‰, 6‰, and 32‰) were designed to conduct a 125-day laboratory incubation experiment to determine the soil CO2 release rate, soil physicochemical properties, and soil enzyme activities, and to correlate C mineralization with biotic and abiotic factors. A correlation analysis of soil physical and chemical properties, extracellular enzyme activities, and carbon mineralization rates was conducted to investigate their intrinsic linkages, and a multiple linear regression of C mineralization at different sites was performed to explore the variability of mineralization among different site types. Structural equation models were established in the pre- and post-incubation stages to study the pathways of soil C mineralization at different incubation times, and the mechanism of mineralization was further verified by enzyme stoichiometry. The results showed that, at the end of 125 days of incubation, the 32‰ salinity addition reduced the cumulative mineralization of forest and agroforestry types by 28.41% and 34.35%, respectively, compared to the 0‰ salinity addition. Soil C mineralization in the three different land-use types was highly correlated with the active C fractions of readily oxidizable C (ROC), dissolved organic C, and microbial biomass C (MBC) in the soil, with the standardized coefficients of multivariate linear regression reaching 0.67 for MBC in the wetland and −0.843 for ROC in the forest. Under long-term salinity additions, increased salinity would reduce the microbial respiratory quotient value by inhibiting β-glucosidase activity, thus indirectly affecting the rate of CO2 release. With added salinity, the mineralization of non-saline soil was more susceptible to the inhibitory effect of salinity, whereas the mineralization of salinized soil was more controlled by soil C pools.

Funder

Special Fund Project for Technology Innovation on Carbon Peak Carbon-Neutral in Jiangsu Province in 2021

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3