Research on a Hydraulic Cylinder Pressure Control Method for Efficient Traction Operation in Electro-Hydraulic Hitch System of Electric Tractors

Author:

Luo Zhenhao1,Wang Jihang1,Wu Jing1,Zhang Shengli2,Chen Zhongju1,Xie Bin1

Affiliation:

1. College of Engineering, China Agricultural University, Beijing 100083, China

2. BYD Company Limited, Shenzhen 518122, China

Abstract

The tractor is the primary power device of the agricultural production process. For the problem that the traditional electro-hydraulic hitch control method for tractors cannot simultaneously meet the requirements of maintaining a constant ploughing depth and improving traction performance and electric tractor overall efficiency, this paper proposes a hydraulic cylinder pressure control method of the electro-hydraulic hitch system for electric tractors. We establish a tractor-implement system dynamic model, calculate the rear axle load of the tractor in real-time according to the actual working parameters under the premise of ensuring the constant ploughing depth, construct a traction performance objective optimization function, and use the genetic algorithm to solve the optimal hydraulic cylinder pressure value of the electro-hydraulic hitch system. Hardware-in-the-loop (HIL) simulation results show that the electric tractor under the traditional position control method and the hydraulic cylinder pressure control method has an average wheel slip of 18.50% and 16.93%, an average traction efficiency of 71.35% and 73.08%, and an average overall efficiency of 50.81% and 52.40%. The hydraulic cylinder pressure control method proposed in this paper reduces the wheel slip by 9.27%, increases the traction efficiency by 2.42%, improves the electric tractor overall efficiency by 3.13%, and reduces the electric tractor overall energy loss by 7.67% compared with the traditional position-control method. Therefore, the hydraulic cylinder pressure control method of the electro-hydraulic hitch system proposed in this paper can achieve the purpose of effectively improving tractor traction performance and reducing tractor energy loss while maintaining a constant ploughing depth. This study offers technological references for electric tractors to improve traction performance and reduce the overall energy loss of electric tractors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3