Research and Experiment on Variable-Diameter Threshing Drum with Movable Radial Plates for Combine Harvester

Author:

Wang Fazheng12ORCID,Liu Yanbin12,Li Yaoming12,Ji Kuizhou12

Affiliation:

1. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

2. Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, Zhenjiang 212013, China

Abstract

In order to solve the problem of the threshing performance of a large combine harvester being reduced due to the non-adjustable diameter of the threshing drum, a variable-diameter threshing drum with movable radial plates based on the principle of concentric regulation was studied. It was mainly composed of a mechanism for adjusting the diameter by moving the radial plates, six fixed threshing tooth rods, six retractable threshing tooth rods and the single piston rod hollow hydraulic cylinder. The threshing gap can be adjusted by a stepless change of the drum diameter. By using RecurDyn simulation and field performance tests, the adjustable ranges of diameter and gap of the movable variable-diameter threshing drum were 670~710 mm and 10~30 mm. Based on the feed amount of the combine, the rotation speed of the threshing drum and the threshing gap (the diameter of the drum) as the influencing parameters, and the grain entrainment loss rate, grain un-threshed rate and grain breakage rate as the evaluation indexes, the three-factor and three-level response surface tests were carried out, and the result data were analyzed using Design-Expert 13.0. The optimal threshing gap and rotation speed of the threshing drum were determined under different feeding quantities. A comparative test was carried out to adjust and fix the threshing gap and rotation speed of the threshing drum in real time according to the change in feeding amount. The results showed that when the working parameter combination under different feeding amounts was adjusted in real time, the entrainment loss rate was 0.65%, the un-threshed rate was 0.063% and the breakage rate was 0.47%. Compared with the threshing gap and the rotation speed of the threshing drum being fixed, the entrainment loss rate, the un-threshed rate and the breakage rate were reduced by 44.9%, 27.6% and 34.1%, respectively. A threshing drum with variable diameter was provided for a large multi-crop harvesting combine to realize the concentric stepless adjustment of the threshing gap.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference38 articles.

1. Library threshing device interactive engineering analysis system based on model;Liu;J. Northeast Agric. Univ.,2021

2. Effect of roller structural parameter on flexible threshing character for paddy rice;Xie;J. Agric. Mech. Res.,2009

3. Parametric design of axial-flow separator of harvester based on Petri net model;Chen;J. Agric. Mach.,2017

4. Finite element simulation analysis of ear collision in corn threshing;Hu;Agric. Equip. Technol.,2018

5. Simulation of rice threshing performance with concentric and non-concentric threshing gaps;Su;Biosyst. Eng.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3