Lettuce Soil Microbiome Modulated by an L-α-Amino Acid-Based Biostimulant

Author:

Acin-Albiac Marta1ORCID,García-Jiménez Beatriz1ORCID,Marín Garrido Cándido2,Borda Casas Elisabet2ORCID,Velasco-Alvarez Javier2ORCID,Serra Nuria Sierras2ORCID,Acedo Alberto1ORCID

Affiliation:

1. Biome Makers Inc., San Francisco, CA 95605, USA

2. Plant Health R&D, Bioiberica, S.A.U, 08950 Barcelona, Spain

Abstract

Maintenance of soil health is of foremost importance to sustain and increase crop productivity, while meeting the demand of a rising global population. Soil microbiome is gaining increasing attention as a modulator of soil health. Microbial communities confer traits to the soil as a living organism, which functions holistically and conforms part of the plant holobiont, reassembling the human-gut axis. Novel strategies in biostimulant development advocate for modulation of the native soil microbiome and the reinforcement of microbial networking to outpace pathogen inclusion. Consequently, we hypothesize that Terramin® Pro may promotes beneficial microorganisms, depending on the native microbiota of soil, which would lead to an improvement of crop performance indicators. We proposed a soil microbiome-based approach to characterize the effect of an L-α-amino acid based biostimulant (Terramin® Pro) on resulting plant phenotypes in lettuce cultivars (Lactuca sativa L.) to address our hypothesis. First, product application promoted Actinobacteria group in assorted soils with different track of agronomic practices. Secondly, biostimulant application improved chlorophyll content in particular soils deviating from standard conditions, i.e., sick or uncultivated ones. Specially, we observed that product application at 30 L ha−1 improved lettuce phenotype, while potentially promoted entomopathogenic fungi (Beauveria and Metarhizium spp.) and suppressed other lettuce disease-related fungi (Olpidium spp.) in nematode-infested soils. Further investigations could deepen into Terramin® Pro as a sustainable prebiotic strategy of soil indigenous microbiota, through in-house microbiome modulation, even in additional crops.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3