Estimation of Frost Hazard for Tea Tree in Zhejiang Province Based on Machine Learning

Author:

Xu Jie,Guga Suri,Rong Guangzhi,Riao Dao,Liu Xingpeng,Li Kaiwei,Zhang Jiquan

Abstract

Tea trees are the main economic crop in Zhejiang Province. However, spring cold is a frequent occurrence there, causing frost damage to the valuable tea buds. To address this, a regional frost-hazard early-warning system is needed. In this study, frost damage area was estimated based on topography and meteorology, as well as longitude and latitude. Based on support vector machine (SVM) and artificial neural networks (ANNs), a multi-class classification model was proposed to estimate occurrence of regional frost disasters using tea frost cases from 2017. Results of the two models were compared, and optimal parameters were adjusted through multiple iterations. The highest accuracies of the two models were 83.8% and 75%, average accuracies were 79.3% and 71.3%, and Kappa coefficients were 79.1% and 67.37%. The SVM model was selected to establish spatial distribution of spring frost damage to tea trees in Zhejiang Province in 2016. Pearson’s correlation coefficient between prediction results and meteorological yield was 0.79 (p < 0.01), indicating consistency. Finally, the importance of model factors was assessed using sensitivity analysis. Results show that relative humidity and wind speed are key factors influencing accuracy of predictions. This study supports decision-making for hazard prediction and defense for tea trees facing frost.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3