Mixed Silage of Banana Pseudostem and Maize Stover on Ethiopian Smallholder Farms: Effect of Fermentation Package and Location on Microbiological and Nutritional Evaluation

Author:

Mitiku Ashenafi Azage12,Vandeweyer Dries1ORCID,Adriaens Ines3ORCID,Kechero Yisehak2,Van Campenhout Leen1ORCID,Aernouts Ben3ORCID

Affiliation:

1. Research Group for Insect Production and Processing (IP&P), Division of Food and Microbial Technology (CLMT), Department of Microbial and Molecular Systems, Geel Campus, KU Leuven, B-2440 Geel, Belgium

2. College of Agricultural Sciences, Department of Animal Science, Arba Minch University, Arba Minch P.O. Box 21, Ethiopia

3. Livestock Technology Research Group, Division of Animal and Human Health Engineering, Department of Biosystems, Geel Campus, KU Leuven, B-2440 Geel, Belgium

Abstract

Preservation of widely available crop residues as silage could reduce feed shortages in Ethiopia. Four mixtures of banana pseudostem (BPS) and fresh maize stover (FMS) were prepared for fermentation considering the local conditions and available resources: 100% FMS, 80% FMS + 20% BPS, 60% FMS + 40% BPS and 95% BPS + 5% molasses. Each of the four mixtures was fermented in plastic bags as well as in plastic drums. Apart from the effect of the mixture and fermentation package, two fermentation locations were also considered. The fermentation was replicated three times for each combination of mixture, fermentation package and fermentation condition. The pH, microbial counts (total viable count, lactic acid bacteria count, Enterobacteriaceae count, yeast and mold count) and nutritional values of the fresh material and mixed silage were measured. Fermentation was successful for all mixed silages, reaching a pH below four, while the total viable count, Enterobacteriaceae count, yeast and mold count dropped (all p ≤ 0.05) and digestibility and metabolizable energy increased compared to the fresh mixtures. Enterobacteriaceae counts reached values below the detection limit in all mixed silages fermented in drums unlike the bag silages. The plastic bags used as fermentation package were found to be sensitive to damage, resulting in a a higher pH and visible signs of yeast and mold. Although fermentation of BPS with molasses resulted in a significant increase in dry matter digestibility (41.14 to 46.17–49.92%) and organic matter digestibility (50.52 to 55.22–58.75%), they were lower compared to most mixed silages with FMS. Fermentation of 80 and 60% FMS mixtures increased the crude protein content from 44.30 to 71.27–82.20 g/kg DM, and from 43.63 to 63.10–65.83 g/kg DM, respectively. The highest increase (1.77 MJ/kg DM) in metabolizable energy was recorded for 80% FMS fermented in drums. The location of fermentation had no effect on pH, microbial counts and nutritional values. This study demonstrates that crop by-products can be successfully fermented under conditions prevailing in Ethiopia, with drums being preferred over bags. Mixing BPS with FMS is advised to absorb BPS juice losses and obtain silage with more crude protein, neutral and acid detergent fibers and metabolizable energy, as well as a higher digestibility.

Funder

Flemish Interuniversity Council for University Development Cooperation

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3