Rapid, Clean, and Sustainable Bioprocessing of Toxic Weeds into Benign Organic Fertilizer

Author:

Banupriya Dhandapani,Tabassum-Abbasi ,Abbasi Tasneem,Abbasi Shahid AbbasORCID

Abstract

A recent report in this journal from these authors, which shows that vermicomposting transforms a toxic weed such as lantana into a benign organic fertilizer, can be of practical utility only if processes can be developed for rapid, inexpensive, and sustainable vermicomposting of these weeds. This paper describes attempts leading to such a process for the vermicomposting of toxic and allelopathic weeds lantana (Lantana camara), parthenium (Parthenium hysterophorus), and ipomoea (Ipomoea carnea). For it, the ‘high-rate vermicomposting’ concept was employed due to which the weeds could be used for vermicomposting directly in each case without the need for pre-composting or any other form of pretreatment. The manure worm Eisenia fetida, which had been cultured on cowdung as feed and habitat, was slow to adapt to the weed-feed but survived and then began to thrive, in all the three weeds, enabling the weeds’ sustained and efficient vermicomposting throughout the 16 month’s uninterrupted operation of the vermireactors. In all cases the extent of vermicast production per unit time showed a rising trend, indicating that the rate of vermicomposting was set to rise further with time. The vermicomposting was found to accompany a 50 ± 10% loss of organic carbon of each weed with a 50 ± 10% increase in the concentration of total nitrogen as also the weed’s additional mineralization. The combined effect was a significant lowering of the carbon-nitrogen ratio, and enrichment of all major, medium, and trace nutrients in the vermicomposts relative to their parent substrates. The findings establish that sustained, direct, and rapid transformation to organic fertilizers of even toxic and allelopathic weeds can be accomplished with the high-rate vermicomposting paradigm.

Funder

Council of Scientific and Industrial Research

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3