Precision Agriculture in Brazil: The Trajectory of 25 Years of Scientific Research

Author:

Cherubin Maurício RobertoORCID,Damian Júnior MeloORCID,Tavares Tiago RodriguesORCID,Trevisan Rodrigo GonçalvesORCID,Colaço André FreitasORCID,Eitelwein Mateus Tonini,Martello Maurício,Inamasu Ricardo Yassushi,Pias Osmar Henrique de Castro,Molin José PauloORCID

Abstract

Precision agriculture (PA) stands out as an innovative way to manage production resources, increasing the efficiency and the socioeconomic and environmental sustainability of agricultural systems. In Brazil, the principles and tools of PA started to be adopted in the late 1990s. To reveal the scientific trajectory and advances in PA taken over the past 25 years in Brazil, we conducted a comprehensive and systematic literature review. After searching for available peer-reviewed literature, 442 publications were selected to compose the database. Our bibliometric review showed that the scientific PA network is growing in Brazil, with the number and quality of publications, the number of interactions among research groups, and the number of international collaborations increasing. Soil and plant management are the two main pillars of PA research (~61% of the publications). More recently, research has evolved to include other areas, such as the use of proximal sensors to monitor soil and crop development, remote sensing using images from satellites and remotely piloted aircraft systems, and the development of decision support tools. A substantial part of Brazilian PA research is marked by the evaluation and adaptation of imported technologies, a scenario that is slowly changing with the growth of well-trained human resources and advances in national industry. Based on Brazilian scientific history and remaining challenges, the key potential areas for future research are (i) the development of digitally based decision support systems, i.e., a shift of focus from on-farm data technologies towards effective, site-specific decision making based on digital data and improved analytics; (ii) on-farm precision experimentation to underpin on-farm data collection and the development of new decision tools; and (iii) novel machine learning approaches to promote the implementation of digitally based decision support systems.

Funder

São Paulo Research Foundation

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference147 articles.

1. Global food demand and the sustainable intensification of agriculture;Proc. Natl. Acad. Sci. USA,2011

2. U.S. Energy Information Administration (EIA) (2019). International Energy Outlook—IEO, Energy Information Administration.

3. Global Consequences of Land Use;Science,2005

4. Global change pressures on soils from land use and management;Glob. Chang. Biol.,2016

5. Solutions for a cultivated planet;Nature,2011

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3