The Application of Machine Learning Models Based on Leaf Spectral Reflectance for Estimating the Nitrogen Nutrient Index in Maize

Author:

Chen Bo,Lu Xianju,Yu Shuan,Gu Shenghao,Huang Guanmin,Guo Xinyu,Zhao Chunjiang

Abstract

Non-destructive acquisition and accurate real-time assessment of nitrogen (N) nutritional status are crucial for nitrogen management and yield prediction in maize production. The objective of this study was to develop a method for estimating the nitrogen nutrient index (NNI) of maize using in situ leaf spectroscopy. Field trials with six nitrogen fertilizer levels (0, 75, 150, 225, 300, and 375 kg N ha−1) were performed using eight summer maize cultivars. The leaf reflectance spectrum was acquired at different growth stages, with simultaneous measurements of leaf nitrogen content (LNC) and leaf dry matter (LDW). The competitive adaptive reweighted sampling (CARS) algorithm was used to screen the raw spectrum’s effective bands related to the NNI during the maize critical growth period (from the 12th fully expanded leaf stage to the milk ripening stage). Three machine learning methods—partial least squares (PLS), artificial neural networks (ANN), and support vector machines (SVM)—were used to validate the NNI estimation model. These methods indicated that the NNI first increased and then decreased (from the 12th fully expanded leaf stage to the milk ripening stage) and was positively correlated with nitrogen application. The results showed that combining effective bands and PLS (CARS-PLS) achieved the best model for NNI estimation, which yielded the highest coefficient of determination (R2val), 0.925, and the lowest root mean square error (RMSEval), 0.068, followed by the CARS-SVM model (R2val, 0.895; RMSEval, 0.081), and the CARS-ANN model (R2val, 0.814; RMSEval, 0.108), which performed the worst. The CARS-PLS model was used to successfully predict the variation in the NNI among cultivars and different growth stages. The estimated R2 of eight cultivars by the NNI was between 0.86 and 0.97; the estimated R2 of the NNI at different growth stages was between 0.92 and 0.94. The overall results indicated that the CARS-PLS allows for rapid, accurate, and non-destructive estimation of the NNI during maize growth, providing an efficient tool for accurately monitoring nitrogen nutrition.

Funder

National Natural Science Foundation of China

Construction of Collaborative Innovation Center of Beijing Academy of Agricultural and Forestry Sciences

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3