Residue and Potassium Management Strategies to Improve Crop Productivity, Potassium Mobilization, and Assimilation under Zero-Till Maize–Wheat Cropping System

Author:

Madar RaghavendraORCID,Singh Yudh Vir,Meena Mahesh Chand,Das Tapas KumarORCID,Paramesh VenkateshORCID,Al-Mana Fahed A.,A. Mattar Mohamed,O. Elansary HosamORCID

Abstract

Understanding of the potassium (K) nutrient cycle and its microbial transformation of unavailable forms of soil K to plant-available K is crucial in any agroecosystem for strategic nutrient management through inorganic fertilizer, crop residue (CR), and microbial applications. Therefore, the present investigation was undertaken to study the effect of crop residue and K management practices on crop productivity, K mobilization from native soil K-pool, and crop assimilation of K under a zero-till maize–wheat cropping system. The experiment consisted of four residue levels (0, 2, 4, and 6 Mg ha−1) and five K levels (0, 50%, 100%, 150% RDK [recommended dose of K] and 50% RDK + potassium solubilizing bacteria, KSB). Results showed that CR retention at 6.0 Mg ha−1 significantly improved grain yield (of maize by 10.17%; wheat by 9.87%), dry matter accumulation, K uptake and redistribution in native soil K pools (water soluble K (WSK), exchangeable K (EK) and non-exchangeable K (NEK)) at 30 and 60 days after sowing and at harvest as compared to no CR. Among the K management, 50% RDK+KSB reported significantly higher grain yield (of maize by 26.22%; wheat by 24.70%), dry matter accumulation, K uptake, and native K pools (WSK, EK, and NEK) at different growth stages compared to no K. Total K did not differ significantly due to residue and K management. The highest actual change of K reported with 6.0 Mg ha−1 CR (51 kg ha−1) and 50% RDK+KSB (59 kg ha−1) over control. Significant (p ≤ 0.01) positive correlation was found among grain yield, dry matter accumulation, K uptake, the actual change in K and different native K pools. It can be concluded that retention of 6 Mg ha−1 CR and supply of 50% K through inorganic fertilizer along with seed inoculation of KSB biofertilizers, improved crop growth, productivity by enhancing K assimilation as a consequence of the release of non-exchangeable K and through the application of CR and K treatments under a zero tillage maize–wheat system.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3