Environmental Factors Related to Climate Change Alter the Chemical Composition and Biological Activity of Lavandula viridis L’Hér Essential Oil

Author:

Mansinhos Inês1ORCID,Gonçalves Sandra1ORCID,Rodríguez-Solana Raquel123ORCID,Moreno-Rojas José Manuel34ORCID,Romano Anabela1ORCID

Affiliation:

1. MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal

2. Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Rancho de la Merced Center, Carretera Cañada de la Loba (CA-3102) Km 3.1., SN, 11471 Jerez de la Frontera, Cádiz, Spain

3. Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo Center, Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain

4. Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain

Abstract

Climate change is affecting all regions of the world, and the Mediterranean region is one of the most affected. Plants accumulate secondary metabolites as an adaptive response to stress circumstances. The present study investigated the effect of different abiotic factor conditions (drought, moderate heat, severe heat, salinity, and UV-B radiation) on the essential oil (EO) yield, composition (volatile profile), and biological activity (enzyme inhibition and antioxidant activity) of Lavandula viridis L’Hér. In general, the environmental conditions increased the extraction yield of EO. Eighty-two compounds were identified in the EO and environmental factors induced some quantitative changes in EO composition. Severe heat and salinity conditions increased the concentration of the two most abundant compounds, 1,8-cineole and camphor. Severe heat also increased the potential of EO to inhibit the enzymes butyrylcholinesterase and tyrosinase. Drought, salinity, and UV-B radiation promoted the ability of EO to inhibit acetylcholinesterase. In addition, heat and drought enhanced the antioxidant activity of EO. These results are relevant for exploring the potential of this EO for industrial applications, although future studies combining the factors studied are important to understand the influence of synergistic effects on the composition and bioactivity of the plant products obtained.

Publisher

MDPI AG

Reference78 articles.

1. Extreme Environments as Sources of Fungal Endophytes Mitigating Climate Change Impacts on Crops in Mediterranean-Type Ecosystems;Ballesteros;Plants People Planet,2023

2. Mansinhos, I., Gonçalves, S., and Romano, A. (2024). How Climate Change-Related Abiotic Factors Affect the Production of Industrial Valuable Compounds in Lamiaceae Plant Species: A Review. Front. Plant Sci., 15.

3. Impact of Various Factors Responsible for Fluctuation in Plant Secondary Metabolites;Verma;J. Appl. Res. Med. Aromat. Plants,2015

4. Brito, C., Dinis, L.-T., Moutinho-Pereira, J., and Correia, C.M. (2019). Drought Stress Effects and Olive Tree Acclimation under a Changing Climate. Plants, 8.

5. Essential oil Composition of Lavender (Lavandula angustifolia Mill.) at Various Plantation Ages and Growth Stages in the Mediterranean Region;Barut;Turk. J. Agric.-Food Sci. Technol.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3