A Novel Method on Recognizing Drum Load of Elastic Tooth Drum Pepper Harvester Based on CEEMDAN-KPCA-SVM

Author:

Zhang Xinyu1,Qin Xinyan1,Lei Jin1,Zhai Zhiyuan1,Zhang Jianglong1,Wang Zhi1

Affiliation:

1. College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China

Abstract

The operational complexities of the elastic tooth drum pepper harvester (ETDPH), characterized by variable drum loads that are challenging to recognize due to varying pepper densities, significantly impact pepper loss rates and mechanical damage. This study proposes a novel method integrating complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), kernel principal component analysis (KPCA), and a support vector machine (SVM) to enhance drum load recognition. The method consists of three principal steps: the initial experiments with ETDPHs to identify the critical factors affecting drum load and to formulate classification criteria; the development of a CEEMDAN-KPCA-SVM model for ETDPH drum load recognition, where drum spindle torque signals are processed by CEEMDAN for decomposition and reconstruction, followed by feature extraction and dimensionality reduction via KPCA to refine the model’s accuracy and training efficiency; and evaluation of the model’s performance on real datasets, highlighting the improvements brought by CEEMDAN and KPCA, as well as comparative analysis with other machine learning models. The results describe four load conditions—no load (mass of pepper intake (MOPI) = 0 kg/s), low load (0 < MOPI ≤ 0.658 kg/s), normal load (0.658 < MOPI ≤ 1.725 kg/s), and high load (MOPI > 1.725 kg/s)—with the CEEMDAN-KPCA-SVM model achieving 100% accuracy on both training and test sets, outperforming the standalone SVM by 6% and 12.5%, respectively. Additionally, it reduced the training time to 2.88 s, a 10.9% decrease, and reduced the prediction time to 0.0001 s, a 63.6% decrease. Comparative evaluations confirmed the superiority of the CEEMDAN-KPCA-SVM model over random forest (RF) and gradient boosting machine (GBM) in classification tasks. The synergistic application of CEEMDAN and KPCA significantly improved the accuracy and operational efficiency of the SVM model, providing valuable insights for load recognition and adaptive control of ETDPH drum parameters.

Funder

National Natural Science Foundation of China

Financial Science and Technology Program of the XPCC

National Key Research and Development Program of China

Publisher

MDPI AG

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3