A Two-Year Study of Bioorganic Fertilizer on the Content of Pb and As in Brown Rice and Rice Yield in a Contaminated Paddy Field

Author:

He Huaidong12ORCID,Zhou Jun3,Xiao Anwen4,Yan Yehan1,Chen Aimin1,Han Bangxing2

Affiliation:

1. School of Environment and Tourism, West Anhui University, Lu’an 237012, China

2. Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu’an 237012, China

3. Library, West Anhui University, Lu’an 237012, China

4. Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

Abstract

Bioorganic fertilizer (BOF) represents favorable potential for agricultural production, but the safe and residual effects of BOF application in heavy-metal-contaminated soils still remain unclear. A two-year field experiment of four rice-growing cycles were conducted to study the effects of the one-time addition of BOF (low and high dosages, 0.45 and 0.9 kg/m2, namely, BOF1 and BOF2, respectively) on the lead (Pb) and arsenic (As) accumulations in brown rice, rice yield, and soil properties in an acidic and Pb-As-contaminated paddy field. The results show that BOF application enhanced the rice yields by 7.9–25.5% and increased the soil pH, organic carbon contents, and fluorescein diacetate hydrolase activity in the former two rice-growing cycles, while these attributes declined gradually and were not significant in the last two cycles. The soil bulk density decreased marginally due to the BOF. Furthermore, the BOF1 treatment barely affected the rice Pb and As concentrations during all cycles, whereas the BOF2 treatment clearly increased the Pb concentrations in brown rice, exceeding the food quality standard limit of 0.2 mg/kg in the last three cycles, and slightly increased the rice As in the former three cycles. The BOF effects on Pb and As in brown rice were due to the changes in the available soil Pb and As, respectively. Our results indicate that a one-time application of BOF could ameliorate the soil conditions of rice growth in two rice-growing cycles, while the high-dose BOF seemed undesirable in toxic-metal-contaminated soils. BOF application at the rate of 0.45 kg/m2 per annum may be a potential strategy for safe rice production in Pb-As-contaminated fields.

Funder

Natural Science Key Research Project of Universities in Anhui Province

National Key Research and Development Program of Chin

Outstanding Youth Research Project of Universities in Anhui Province

National Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3