Identification Model of Soil Physical State Using the Takagi–Sugeno Fuzzy Neural Network

Author:

Zhao Jianlei,Zhou Jun,Sun Chenyang,Wang Xu,Liang ZianORCID,Qi Zezhong

Abstract

Adjusting tillage parameters according to soil conditions can reduce energy consumption. In this study, the working parameters and soil physical parameters of plowing were determined using a designed electric suspension platform and soil instrument. The soil conditions were classified into three physical states, namely ‘hard’, ‘zero’, and ‘soft’ using a fuzzy C-means clustering algorithm, taking the soil moisture content and cone penetration resistance as the grading indexes. The Takagi–Sugeno (T–S) fuzzy neural network classifier was constructed using traction resistance, operating velocity, and plowing depth as inputs to indirectly identify the soil’s physical state. The results show that when 280 groups of test data were used to verify the model, 264 groups were correctly identified, indicating a soil physical state identification accuracy of 94.29%. The T–S fuzzy neural network prediction model can achieve the real-time and accurate physical state identification of paddy soil during plowing.

Funder

Jun Zhou

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference36 articles.

1. Development and Prospect of Key Technologies on Agricultural Tractor;Xie;Trans. Chin. Soc. Agric. Mac.,2018

2. Study the effect of tool geometry and operational conditions on mouldboard plough forces and energy requirement: Part 1. Finite element simulation

3. Modification of a mouldboard plough surface using arrays of polyethylene protuberances

4. Characteristic loading of light mouldboard ploughs at slow speeds

5. Effect of implement and soil parameters on penetration depth of a disc plow;Panigrahi;AMA,1990

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3