Regulation of Inorganic Zinc Supplementation on Intestinal Absorption, Metabolism, and Muscle Development in Broilers Fed Low-Protein Diets

Author:

Sun Ruihong1ORCID,Zhou Changhai1,Jia Yougang2,Li Yumei1,He Yuntong1,Che Haoyu1,Zhang Yonghong1ORCID,Zhang Jing1,Peng Dongqiao1ORCID

Affiliation:

1. Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China

2. Quality Control for Feed and Products of Livestock and Poultry Key Laboratory of Sichuan Province, New Hope Liuhe Co., Ltd., Chengdu 610023, China

Abstract

The issue of nitrogen fertilizer contamination resulting from high-protein diets can be effectively solved by adopting low-protein diets. The objective of this study was to investigate the effects of inorganic zinc supplementation in low-protein diets on 42-day-old broilers across a multitude of parameters. To determine the optimal dose of inorganic zinc in broiler diets with a 1.5% reduction in crude protein, 1-day-old Arbor Acres broilers (n = 270) were randomly assigned to five groups, each containing 54 broilers. Our results revealed that inorganic zinc supplementation at levels of 130 mg/kg elevated growth performance and carcass traits (p < 0.05). It also significantly increased the ratio of intestinal villi heights to crypt depths (p < 0.001), changed intestinal morphology, and significantly increased albumin content in serum (p < 0.05). Furthermore, analysis of mRNA expression showed that 130 mg/kg and 150 mg/kg of inorganic zinc improved the myogenic differentiation involved in muscle development, as well as intestinal tight junction and liver metallothionein capacity (p < 0.001). Additionally, these groups exhibited lower zinc excretion compared with other treatments (p < 0.001). In summary, our findings suggest that inorganic zinc supplementation in low-protein diets holds the potential to support muscle and intestinal development in broilers, presenting a viable nutritional strategy.

Funder

Quality Control for Feed and Products of Livestock and Poultry Key Laboratory of Sichuan Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3