Biosolid Mixtures Applied in Tropical Soils and Their Effect on Coriandrum sativum and Ocimum basilicum Nutritional Uptake

Author:

Lugo-Avilés Leany Enid1,López-Moreno Martha Laura1,Roman-Velazquez Felix R.1ORCID,Lugo-Rosas Joel2

Affiliation:

1. Chemistry Department, University of Puerto Rico at Mayaguez, Mayaguez, PR 00681, USA

2. PRASA—Puerto Rico Aqueduct and Sewer Authority, Mayaguez, PR 00681, USA

Abstract

Agricultural soils are degraded worldwide as result of anthropogenic activities; environmental contamination; and excessive use of chemicals, fertilizers, and pesticides. Scientists are concerned about this problem; during the past few years sewage compost and sludge have been used as alternatives to improve the soil’s physical and chemical characteristics. Recycling solid waste residues can be a cost-effective way to reduce landfill material disposal and improve macro and micronutrients’ availability in agricultural soils. In this study, two types of biosolids (compost and sludge) were added to tropical soils (coloso and voladora series) to improve the nutritional content in two edible herbs (basil and coriander). Soil mixtures were made by volume percentage; compost was constant, at 25%, and soil and sludge were incorporated in different proportions to complete the 100% (25 comp/75 soil, 25 comp/62.5 soil/12.5 sludge, 25 comp/50 soil/25 sludge and 25 comp/37.5 soil/37.5 sludge). pH and electrical conductivity were measured in soil mixtures. Basil and coriander were cultivated in pots for 30 days at an open greenhouse (5 replicates per soil mixtures). Germination percentage, stems’ length, total chlorophyll (SPAD 502), acid digestions of plant tissues and an ICP-OES analysis were performed for both plants cultivated in all the soil mixtures. In voladora soil, the pH increased from 4.55 ± 0.10 to 5.64 ± 0.22 and EC from 0.0563 ± 0.0003 dS/m to 1.39 ± 0.01 dS/m in a 25% comp/37.5% soil/37.5% sludge mixture. In the coloso soil, the pH increased from 6.38 ± 0.13 to 6.82 ± 0.07 and electrical conductivity from 0.117 ± 0.001 to 1.310 ± 0.009 dS/m in 25% compost/37.5% soil/37.5% sludge mixture. Significant differences (p < 0.05) were found in the chlorophyll content and stem length for both plants. The highest chlorophyll value was in basil leaves from a 25% compost/50% soil/25% sludge mixture (43.20 ± 074) compared to the coloso soil (26.99 ± 0.43). In the voladora soil, the highest chlorophyll content was in a 25% compost/37.5% soil/37.5% sludge mixture (39.97 ± 0.83). In coriander leaves, the highest chlorophyll content was 33.01 ± 0.84 in the 25% compost/62.5% coloso/12.5% sludge mixture. In the voladora soil, chlorophyll content in leaves did not show a significant difference between treatments. Larger basil stems were found at 25% compost/75% voladora mixture (17.50 ± 2.39 cm) and in a 25% compost/62.5% coloso/12.5% sludge mixture (9.95 ± 0.71 cm) compared to control plants (3.45 ± 0.18 cm). Greater coriander stems were observed in a 25% compost/50% voladora/25% sludge mixture (2.43 ± 0.11 cm) and in a 25% compost/50% coloso/25% sludge mixture (2.17 ± 0.10 cm) compared to control plants (2.05 ± 0.07 cm). Macro and micronutrient content in plants increased with biosolids’ incorporation to soils. Mg content in basil leaves increased from 8.61 ± 0.70 mg/g in the voladora soil to 10.31 ± 0.60 mg/g in a 25% compost/37.5% soil/37.5% sludge mixture. In coriander leaves, Mg increased from 6.91 ± 0.06 mg/g in a 25% compost/75% soil mixture to 9.63 ± 0.02 mg/g in a 25% compost/50% soil/25% sludge mixture. The Mn uptake by basil leaves increased from 0.076 ± 0.005 mg/g in the coloso soil to 0.152 ± 0.019 mg/g in a 25% compost/75% soil mixture. In coriander leaves, Mn increased from 0.357 ± 0.002 mg/g in a 25% compost/75% soil mixture to 0.651 ± 0.006 mg/g in a 25% compost/37.5% soil/37.5% sludge mixture.

Funder

Center for Education and Training in Agricultural and Related Sciences (CETARS) Program

Puerto Rico Aqueduct Sewer Authority

Publisher

MDPI AG

Reference37 articles.

1. Soil degradation in the European Mediterranean region: Processes, status and consequences;Ferreira;Sci. Total. Environ.,2022

2. Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture (2023, March 01). Soil Series Classification Database, Available online: https://www.nrcs.usda.gov/resources/data-and-reports/soil-series-classification-database-sc.

3. Plummer, C., Carlson, D., and Hammersley, L. (2016). Physical Geology, McGraw-Hill Education. [15th ed.].

4. Beinroth, F.H. (1969). An Outline of the Geology of Puerto Rico, University of Puerto Rico, Agricultural Experiment Station Bulletin.

5. Occurrence of pharmaceuticals and their metabolites in sewage sludge and soil: A review on their distribution and environmental risk assessment;Santos;Trends Environ. Anal. Chem.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3