Estimating Winter Wheat Plant Nitrogen Content by Combining Spectral and Texture Features Based on a Low-Cost UAV RGB System throughout the Growing Season

Author:

Zhang Liyuan1,Song Xiaoying1,Niu Yaxiao1,Zhang Huihui2ORCID,Wang Aichen1ORCID,Zhu Yaohui1,Zhu Xingye3,Chen Liping1,Zhu Qingzhen4ORCID

Affiliation:

1. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

2. Water Management and Systems Research Unit, USDA-ARS, 2150 Centre Avenue, Bldg. D., Fort Collins, CO 80526, USA

3. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China

4. High-Tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, Zhenjiang 212013, China

Abstract

As prior information for precise nitrogen fertilization management, plant nitrogen content (PNC), which is obtained timely and accurately through a low-cost method, is of great significance for national grain security and sustainable social development. In this study, the potential of the low-cost unmanned aerial vehicle (UAV) RGB system was investigated for the rapid and accurate estimation of winter wheat PNC across the growing season. Specifically, texture features were utilized as complements to the commonly used spectral information. Five machine learning regression algorithms, including support vector machines (SVMs), classification and regression trees, artificial neural networks, K-nearest neighbors, and random forests, were employed to establish the bridge between UAV RGB image-derived features and ground-truth PNC, with multivariate linear regression serving as the reference. The results show that both spectral and texture features had significant correlations with ground-truth PNC, indicating the potential of low-cost UAV RGB images to estimate winter wheat PNC. The H channel, S4O6, and R_SE and R_EN had the highest correlation among the spectral indices, Gabor texture features, and grey level co-occurrence matrix texture features, with absolute Pearson’s correlation coefficient values of 0.63, 0.54, and 0.69, respectively. When the texture features were used together with spectral indices, the PNC estimation accuracy was enhanced, with the root mean square error (RMSE) decreasing from 2.56 to 2.24 g/kg, for instance, when using the SVM regression algorithm. The SVM regression algorithm with validation achieved the highest estimation accuracy, with a coefficient of determination (R2) of 0.62 and an RMSE of 2.15 g/kg based on the optimal feature combination of B_CON, B_M, G_DIS, H, NGBDI, R_EN, R_M, R_SE, S3O7, and VEG. Overall, this study demonstrated that the low-cost UAV RGB system could be successfully used to map the PNC of winter wheat across the growing season.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Key R&D Project of Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3