Sheep Excrement Increases Mass of Greenhouse Gases Emissions from Soil Growing Two Forage Crop and Multi-Cutting Reduces Intensity

Author:

Zhao Xinzhou,Shi Lina,Lou Shanning,Ning Jiao,Guo Yarong,Jia Qianmin,Hou Fujiang

Abstract

To explore the effects of multi-cutting and sheep excrement on greenhouse gas (GHG) emissions from grassland ecosystems which simulate grazing livestock to a certain extent, spring wheat (Triticum aestivum L., var. Yongliang 15) and common vetch (Vicia sativa L., var. Lanjian 3) were planted in pot experiments in an inland arid region in 2019. Four treatments were conducted with eight replicates: plants without sheep excrement and cutting (CK), plants with multi-cutting (MC), plants with sheep excrement (SE), and plants with multi-cutting and sheep excrement (CE). The results showed that the carbon dioxide (CO2) emission of common vetch with CE significantly was higher than that with MC at the earlier and later branching stages (p < 0.05). That of spring wheat with CE was significantly higher than that with MC at the later tillering stage (p < 0.05). Nitrogen oxide (N2O) emissions of the two forage crops with SE rose significantly more than those with MC at both stages (p < 0.05). Methane (CH4) of both forage crops with SE changed from absorption to emission (p < 0.05). Soil NO3−-N content of both forages significantly increased with SE compared with MC (p < 0.05), while soil NH4+-N content did not change significantly. Sheep excrement changed the CH4 sink into a CH4 source of the soil growing the two forage crops and increased the emissions of CO2 and N2O, whereas multi-cutting significantly reduced the GHG intensity of forage crops mostly by promoting the growth of the two forage crops. Future studies are suggested to identify the spatiotemporal effects of cutting and sheep excrement on GHG emissions to improve the prediction of future climate impacts from grazing activities.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3