Temporal Changes in Sensitivity of Zymoseptoria tritici Field Populations to Different Fungicidal Modes of Action

Author:

Birr TimORCID,Hasler Mario,Verreet Joseph-Alexander,Klink Holger

Abstract

Septoria tritici blotch (STB; Zymoseptoria tritici), one of the most important foliar diseases in wheat, is mainly controlled by the intensive use of fungicides during crop growth. Unfortunately, Z. tritici field populations have developed various extents of resistance to different groups of fungicides. Due to the complete resistance to quinone outside inhibitors (QoIs), fungicidal control of STB relies mainly on demethylation inhibitors (DMIs) and succinate dehydrogenase inhibitors (SDHIs) as well as multi-site inhibitors. In this study, temporal changes in the sensitivity of Z. tritici to selected DMIs (tebuconazole, propiconazole, prothioconazole, prochloraz), SDHIs (boscalid, bixafen), and multi-site inhibitors (chlorothalonil, folpet) were determined in microtiter assays using Z. tritici field populations isolated in 1999, 2009, 2014, and 2020 in a high-disease-pressure and high-fungicide-input area in Northern Germany. For the four tested DMI fungicides, a significant shift towards decreasing sensitivity of Z. tritici field populations was observed between 1999 and 2009, whereby concentrations inhibiting fungal growth by 50% (EC50) increased differentially between the four DMIs. Since 2009, EC50 values of tebuconazole, propiconazole, and prochloraz remain stable, whereas for prothioconazole a slightly increased sensitivity shift was found. A shift in sensitivity of Z. tritici was also determined for both tested SDHI fungicides. In contrast to DMIs, EC50 values of boscalid and bixafen increased continuously between 1999 and 2020, but the increasing EC50 values were much smaller compared to those of the four tested DMIs. No changes in sensitivity of Z. tritici were observed for the multi-site inhibitors chlorothalonil and folpet over the last 21 years. The sensitivity adaptation of Z. tritici to both groups of single-site inhibitors (DMIs, SDHIs) mainly used for STB control represents a major challenge for future wheat cultivation.

Funder

Stiftung Schleswig-Holsteinische Landschaft

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3