Model for Predicting Rice Yield from Reflectance Index and Weather Variables in Lowland Rice Fields

Author:

Onwuchekwa-Henry Chinaza B.ORCID,Ogtrop Floris VanORCID,Roche Rose,Tan Daniel K. Y.ORCID

Abstract

Smallholder rice farmers need a multi-purpose model to forecast yield and manage limited resources such as fertiliser, irrigation water supply in-season, thus optimising inputs and increasing rice yield. Active sensing tools like Canopeo and GreenSeeker-NDVI have provided the opportunity to monitor crop health and development at different growth stages. In this study, we assessed the effectiveness of in-season estimation of rice yield in lowland fields of northwest Cambodia using weather data and vegetation cover information measured with; (1) the mobile app-Canopeo, and (2) the conventional GreenSeeker hand-held device that measures the normalised difference vegetative index (NDVI). We collected data from a series of on-farm field experiments in the rice-growing regions in 2018 and 2019. Average temperature and cumulative rainfall were calculated at panicle initiation and pre-heading stages when the crop cover index was measured. A generalised additive model (GAM) was generated using log-transformed data for grain yield, with the combined predictors of canopy cover and weather data during panicle initiation and pre-heading stages. The pre-heading stage was the best stage for grain yield prediction with the Canopeo-derived vegetation index and weather data. Overall, the Canopeo index model explained 65% of the variability in rice yield and Canopeo index, average temperature and cumulative rainfall explained 5, 65 and 56% of the yield variability in rice yield, respectively, at the pre-heading stage. The model (Canopeo index and weather data) evaluation for the training set between the observed and the predicted yield indicated an R2 value of 0.53 and root mean square error (RMSE) was 0.116 kg ha−1 at the pre-heading stage. When the model was tested on a validation set, the R2 value was 0.51 (RMSE = 925.533 kg ha−1) between the observed and the predicted yield. The NDVI-weather model explained 62% of the variability in yield, NDVI, average temperature and cumulative rainfall explained 3, 62 and 54%, respectively, of the variability in yield for the training set. The NDVI-weather model evaluation for the training set showed a slightly lower fit with R2 value of 0.51 (RMSE = 0.119 kg ha−1) between the observed and the predicted yield at pre-heading stage. The accuracy performance of the model indicated an R2 value of 0.46 (RMSE = 979.283 kg ha−1) at the same growth stage for validation set. The vegetation-derived information from Canopeo index-weather data increasingly correlated with rice yield than NDVI-weather data. Therefore, the Canopeo index-weather model is a flexible and effective tool for the prediction of rice yield in smallholder fields and can potentially be used to identify and manage fertiliser and water supply to maximise productivity in rice production systems. Data availability from more field experiments are needed to test the model’s accuracy and improve its robustness.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3