Data-Driven Simulator: Redesign of Chickpea Harvester Reels

Author:

Golpira HiwaORCID,Sola-Guirado Rafael R.ORCID

Abstract

Conventional redesign methodologies applied on the grain harvester headers for the mechanical harvesting of chickpeas cause its progress to not be as rapid and technological. This paper presents a hybrid modeling-optimization methodology to design harvester reels for efficient chickpea harvesting. The five fabricated headers were tested in both real and virtual modeling environments to optimize the operational parameters of the reel for minimum losses. Harvesting losses data gathered from chickpea fields over ten years of trials were fed into a fuzzy logic model, which in turn was merged with simulated annealing to develop a simulator. To this end, simulated annealing was used to produce combinations of reel diameter and number of bats, to be fed into the fuzzy model until achieving a minimum harvesting loss. The proposed model predicts the reel structure measured in-field evaluation, which fits well with the previously established mathematical model. A significant improvement in harvesting performance, 71% pod harvesting, validates the benefits of the proposed fuzzy-simulated annealing approach to optimize the design of grain harvester headers.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference51 articles.

1. Chickpea Production in 2019, Crops/Regions/World list/Production Quantity (Pick Lists). Retrieved 7 October 2021http://www.fao.org/faostat/en/#data/QC

2. Measures at Farm Level to Reduce Greenhouse Gas Emissions from EU Agriculture 2014https://www.europarl.europa.eu/RegData/etudes/note/join/2014/513997/IPOL-AGRI_NT(2014)513997_EN.pdf

3. Modeling the optimal factors affecting combine harvester header losses;Zareei;Agric. Eng. Int. CIGR J.,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3