Fuzzy Mathematical Model of Photosynthesis in Jalapeño Pepper

Author:

García-Rodríguez Luz del Carmen1ORCID,Morales-Viscaya Joel Artemio2ORCID,Prado-Olivarez Juan2ORCID,Barranco-Gutiérrez Alejandro Israel2ORCID,Padilla-Medina José Alfredo2ORCID,Espinosa-Calderón Alejandro1ORCID

Affiliation:

1. Regional Center for Optimization and Device Development, National Technological Institute of Mexico, Celaya 38020, Guanajuato, Mexico

2. Department of Electrical and Electronic Engineering, National Technological Institute of Mexico, Celaya 38010, Guanajuato, Mexico

Abstract

Photosynthesis is one of the essential processes for life on the planet. Photosynthesis cannot be measured directly because this complex process involves different variables; therefore, if some variables of interest are integrated and measured, photosynthesis can be inferred through a mathematical model. This article presents a fuzzy mathematical model to estimate photosynthesis. This approach uses as input variables: Soil moisture, ambient temperature, incident radiation, relative humidity, and leaf temperature. The fuzzy system was trained through data obtained from experiments with jalapeño pepper plants and then validated against the LI-COR Li-6800 equipment. The correlation coefficient (R2) obtained was 0.95, which is a higher value than some published in the literature. Based on the Takagi-Sugeno method, the proposed model was designed and implemented on the MATLAB platform using ANFIS (adaptive neuro-fuzzy inference system) to determine the parameters, thus achieving a high-precision model. In addition, the fuzzy model can predict photosynthesis at different temperature changes, soil moisture levels, and light levels. The results of this study indicate the possibility of modeling photosynthesis using the fuzzy logic technique, whose performance is much higher than other methods published in recent articles.

Funder

Tecnológico Nacional de México

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3