Nitrogen Fertiliser Effects on Grain Anthocyanin and γ-Oryzanol Biosynthesis in Black Rice

Author:

Thapa Manisha1ORCID,Liu Lei1ORCID,Barkla Bronwyn J.1ORCID,Kretzschmar Tobias1ORCID,Rogiers Suzy Y.2ORCID,Rose Terry J.13ORCID

Affiliation:

1. Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia

2. NSW Department of Primary Industries, Wollongbar, NSW 2477, Australia

3. Centre for Organics Research, Southern Cross University, Lismore, NSW 2480, Australia

Abstract

Accumulation of phytochemicals in vegetative tissue under nitrogen (N) stress as an adaptive strategy has been investigated in various crops, but the effect of applied N on grain phytochemicals is poorly understood. This study investigated the effect of applied N on the biosynthesis and accumulation of rice (Oryza sativa L.) grain anthocyanin and γ-oryzanol under different ultraviolet-B (UV-B) conditions in a controlled pot trial using two distinct black rice genotypes. The response of grain anthocyanin and γ-oryzanol content to applied N was genotype-dependent but was not altered by UV-B conditions. Applied N increased grain anthocyanin and decreased γ-oryzanol content in genotype SCU212 but had no significant effect in genotype SCU254. The expression of the OsKala3 regulatory gene was significantly upregulated in response to applied N in SCU212, while the expressions of OsKala4 and OsTTG1 were unchanged. The expression of all three regulatory genes was not significantly affected in SCU254 with applied N. Key anthocyanin biosynthesis genes were upregulated in grain by N application, which indicates that the common increase in anthocyanin in vegetative tissues under N deprivation does not hold true for reproductive tissues. Hence, any future approach to target higher content of these key phytochemicals in grains should be genotype-focused.

Funder

Australian Research Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3