Optimization Design of a Pneumatic Wheat-Shooting Device Based on Numerical Simulation and Field Test in Rice–Wheat Rotation Areas

Author:

Wang ChaoORCID,Li Hongwen,He JinORCID,Wang Qingjie,Lu Caiyun,Yang Hanyu

Abstract

In rice–wheat rotation areas of China, traditional wheat seeders have severe blockage, low working efficiency and poor seeding quality. In this study, a pneumatic shooting technology was designed, consisting mainly of a nozzle, shell and acceleration tube. To improve the sowing depth of the pneumatic shooting device, the response-surface methodology of structure parameters and CFD simulation technology was adopted in this work. The effects of working pressure, acceleration-tube diameter and throat distance on the steady airflow length (SAL) and steady airflow velocity (SAV) were studied by airflow field analysis, and the response-surface method was introduced to obtain the optimal parameter combination of the pneumatic shooting device for wheat. The optimal parameter combination was working pressure 686 kPa, acceleration tube diameter 8 mm and throat distance 20 mm. The simulation result showed that the optimized device of pneumatic shooting performs faster and has more stable airflow field characteristics in comparison to the initial device. The field test demonstrated that the optimized device has about 68% higher seeding depth than the initial device. The average field-seeding depth of the optimized device was 19.95 mm, which is about 68% higher than the initial device. The emergence rate for the optimized device was about 88.7% without obvious reduction. CFD and response-surface methods positively affect the optimization of pneumatic wheat-shooting devices, and the significance was also confirmed.

Funder

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference37 articles.

1. China Industrial Information Networkhttps://www.chyxx.com/industry/

2. Design and experiment of 2BMFDC-6 half-tillage seeder of wheat after rice;Li;Southwest Chin. J. Agric. Sci.,2011

3. The Happy Seeder enables direct drilling of wheat into rice stubble

4. Design and experiment on critical component of cultivator for straw returning in paddy field and dry land;Zhang;Chin. Soc. Agric. Eng.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3