Establishing a Prediction Model for Tea Leaf Moisture Content Using the Free-Space Method’s Measured Scattering Coefficient

Author:

Yin Hang1ORCID,Ma Fangyan1,Wang Dongwei1,He Xiaoning1,Yin Yuanyuan1,Song Chao1,Zhao Liqing1

Affiliation:

1. College of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao 266109, China

Abstract

The rapid and nondestructive detection of tea leaf moisture content (MC) is of great significance to processing tea with an automatic assembly line. This study proposes an MC detection method based on microwave scattering parameters (SPs). Through the established free-space electromagnetic measurement device, 901 different frequency points are taken between 2.45 and 6 GHz using a vector network analyzer (VNA). The SPs of tea leaves with different moisture contents (5.72–55.26%) at different bulk density and different sample thicknesses were measured. The relationship between frequency, S21 amplitude and moisture content, thickness, and bulk density of tea was analyzed using correlation coefficients, significance analysis, and model construction. Back propagation (BP) neural network, decision tree (DT), and random forest (RF) MC prediction models were established with the frequency, amplitude, and phase of the SPs, thickness, and bulk density of the samples as inputs. The results showed that the RF-based model had the best performance, with determination coefficient (R2) = 0.998, mean absolute error (MAE) = 0.242, and root mean square error (RMSE) = 0.614. Compared to other nondestructive testing processes for tea, this method is simpler and more accurate. This study provides a new method for the detection of tea MC, which may have potential applications in tea processing.

Funder

National Modern Agricultural Industry Technology System Post Scientist Project

National Natural Science Foundation of China

Shandong modern agricultural industry system wheat industry innovation team

Qingdao Agricultural University Doctoral Start-Up Fund

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3