Effect of the Matrix and Target on the Accurate Quantification of Genomic and Plasmid DNA by Digital Polymerase Chain Reaction

Author:

Si Nengwu12,Li Jun1,Gao Hongfei1,Li Yunjing1,Zhai Shanshan1,Xiao Fang1,Zhang Li2,Wu Gang1,Wu Yuhua1

Affiliation:

1. Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China

2. College of Life Science, South-Central Minzu University, Wuhan 430074, China

Abstract

In polymerase chain reaction (PCR)-based nucleic acid quantification, the DNA template type, primer/probe sequence, and instrument platform such as real-time quantitative PCR (qPCR) and digital PCR (dPCR) affect the accuracy and reliability of quantitative results. In this study, a plasmid DNA (pDNA) pBI121-screening, genetically modified (GM) rice SDrice genomic DNA (gDNA), and GM rapeseed SDrape gDNA, all carrying the same 11 screening elements, were used to prepare samples of different levels of gDNA and pDNA in a non-GM gDNA background. The comparison of the dPCR assays targeting the 11 screening elements revealed that the primer/probe set is a key factor that affects the accuracy of dPCR quantification. The optimal PCR method for the 11 screening elements was screened out from among the validated qPCR methods. The accuracy of the qPCR quantification of the low-level pDNA and gDNA test samples was low when pDNA was used as a calibrator, whereas that of the dPCR quantification was high and not affected by variations in template type and detection target. The validated dPCR assays targeting one or two elements can be randomly selected to characterize multiple-target pDNA reference materials (RMs). Low-level pDNA RMs with certified values can be used as quality controls for dPCR assays to avoid significant bias in gDNA quantification.

Funder

Major Projects of Agricultural Biological Breeding

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SGS: SqueezeNet-guided Gaussian-kernel SVM for COVID-19 Diagnosis;Mobile Networks and Applications;2024-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3