Author:
Tang Qingsong,Tang Shuhang,Luo Bing,Luo Xin,Feng Liang,Li Siyao,Wu Guanghui
Abstract
Large quantities of gas resources have been found in the Paleo-Mesozoic carbonate rocks in the Sichuan Basin. However, many wells cannot obtain high production in deep low porosity-permeability reservoirs. For this contribution, we provide a steerable pyramid method for identifying the fault damage zone in the Kaijiang–Liangping platform margin, which is infeasible by conventional seismic methods. The results show that steerable pyramid processing could enhance the seismic fault imaging and a series of NW-trending strike-slip faults are found along the trend of the carbonate platform margin. The steerable pyramid attribute presents distinct vertical and horizontal boundaries of the fault damage zone, and heterogeneous intensity of an un-through-going damage zone. The width of the fault damage zone is generally varied in the range of 100–500 m, and could be increased to more than 1000 m in the fault overlap zone, intersection area, and fault tips. Further, the fault damage zone plays a constructive role in the high gas production in the deep tight carbonate reservoir. The results suggest the steerable pyramid method is favorable for identifying the weak strike-slip faults and their damage zone. The width of the fault damage zone is closely related to fault displacement, and the much wider damage zone is generally influenced by the fault overlapping and interaction. The fractured reservoirs in the fault damage zone could be a new favorable exploitation domain in the Sichuan Basin.
Funder
Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献