Abstract
We derive time evolution equations, namely the Klein–Gordon equations for coherent fields and the Kadanoff–Baym equations in quantum electrodynamics (QED) for open systems (with a central region and two reservoirs) as a practical model of quantum field theory of the brain. Next, we introduce a kinetic entropy current and show the H-theorem in the Hartree–Fock approximation with the leading-order (LO) tunneling variable expansion in the 1st order approximation for the gradient expansion. Finally, we find the total conserved energy and the potential energy for time evolution equations in a spatially homogeneous system. We derive the Josephson current due to quantum tunneling between neighbouring regions by starting with the two-particle irreducible effective action technique. As an example of potential applications, we can analyze microtubules coupled to a water battery surrounded by a biochemical energy supply. Our approach can be also applied to the information transfer between two coherent regions via microtubules or that in networks (the central region and the N res reservoirs) with the presence of quantum tunneling.
Subject
General Physics and Astronomy
Reference76 articles.
1. DNA methylation and memory formation
2. The unsolved problems of neuroscience
3. A Mathematical Theory of Communication
4. Development in concepts in quantum field theory in half century;Umezawa;Math. Jpn.,1995
5. Advanced Field Theory: Micro, Macro, and Thermal Physics;Umezawa,1995
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献