Maximum Likelihood Inference for Asymmetric Stochastic Volatility Models

Author:

Abbara OmarORCID,Zevallos MauricioORCID

Abstract

In this paper, we propose a new method for estimating and forecasting asymmetric stochastic volatility models. The proposal is based on dynamic linear models with Markov switching written as state space models. Then, the likelihood is calculated through Kalman filter outputs and the estimates are obtained by the maximum likelihood method. Monte Carlo experiments are performed to assess the quality of estimation. In addition, a backtesting exercise with the real-life time series illustrates that the proposed method is a quick and accurate alternative for forecasting value-at-risk.

Funder

São Paulo Research Foundation

Publisher

MDPI AG

Subject

Economics and Econometrics

Reference26 articles.

1. A note on stochastic volatility model estimation;Abbara;Brazilian Review of Finance,2019

2. Abbara, Omar, and Zevallos, Mauricio (2022). Estimation and forecasting of long memory stochastic volatility models. Studies in Nonlinear Dynamics and Econometrics.

3. Alternative assymmetric stochastic volatility models;Asai;Econometric Reviews,2011

4. Black, Fischer (1976). Proceedings of the Business and Economics Section of the American Statistical Association, American Statistical Association.

5. Evaluating interval forecasts;Christoffersen;Symposium on Forecasting and Empirical Methods in Macroeconomics and Finance,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3