Pipelined Stochastic Gradient Descent with Taylor Expansion

Author:

Jang Bongwon1,Yoo Inchul2,Yook Dongsuk2ORCID

Affiliation:

1. Department of Computer Science and Engineering, Korea University, Seoul 02841, Republic of Korea

2. Artificial Intelligence Laboratory, Department of Computer Science and Engineering, Korea University, Seoul 02841, Republic of Korea

Abstract

Stochastic gradient descent (SGD) is an optimization method typically used in deep learning to train deep neural network (DNN) models. In recent studies for DNN training, pipeline parallelism, a type of model parallelism, is proposed to accelerate SGD training. However, since SGD is inherently sequential, naively implemented pipeline parallelism introduces the weight inconsistency and the delayed gradient problems, resulting in reduced training efficiency. In this study, we propose a novel method called TaylorPipe to alleviate these problems. The proposed method generates multiple model replicas to solve the weight inconsistency problem, and adopts a Taylor expansion-based gradient prediction algorithm to mitigate the delayed gradient problem. We verified the efficiency of the proposed method using the VGG-16 and the ResNet-34 on the CIFAR-10 and CIFAR-100 datasets. The experimental results show that not only the training time is reduced by up to 2.7 times but also the accuracy of TaylorPipe is comparable with that of SGD.

Funder

Ministry of Science, ICT, and Future Planning

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference27 articles.

1. Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012, January 3–6). ImageNet Classification with Deep Convolutional Neural Networks. Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA.

2. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups;Hinton;IEEE Signal Process. Mag.,2012

3. Devlin, J., Chang, M.W., Lee, K., and Toutanova, K. (2019, January 2–7). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA.

4. Yin, L., Wang, L., Li, T., Lu, S., Yin, Z., Liu, X., Li, X., and Zheng, W. (2023). U-Net-STN: A novel end-to-end lake boundary prediction model. Land, 12.

5. Multiscale feature extraction and fusion of image and text in VQA;Lu;Int. J. Comput. Intell. Syst.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3