The Short Time Prediction of the Dst Index Based on the Long-Short Time Memory and Empirical Mode Decomposition–Long-Short Time Memory Models

Author:

Zhang Jinyuan12,Feng Yan12,Zhang Jiaxuan1,Li Yijun1

Affiliation:

1. Institute of Space Weather, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190, China

Abstract

The Dst index is the geomagnetic storm index used to measure the energy level of geomagnetic storms, and the prediction of this index is of great significance for geomagnetic storm studies and solar activities. In contrast to traditional numerical modeling techniques, machine learning, which emerged decades ago based on rapidly developing computer hardware and software and artificial intelligence methods, has been unprecedentedly developed in geophysics, especially solar–terrestrial space physics. This study uses two machine learning models, the LSTM (Long-Short Time Memory, LSTM) and EMD-LSTM models (Empirical Mode Decomposition, EMD), to model and predict the Dst index. By building the Dst index data series from 2018 to 2023, two models were built to fit and predict the data. Firstly, we evaluated the influences of the learning rate and the amount of training data on the prediction accuracy of the LSTM model, and finally, 10−3 was thought to be the optimal learning rate. Secondly, the two models were used to predict the Dst index in the solar active and quiet periods, respectively, and the RMSE (Root Mean Square Error) of the LSTM model in the active period was 7.34 nT and the CC (correlation coefficient) was 0.96, and those of the quiet period were 2.64 nT and 0.97. The RMSE and CC of the EMD-LSTM model were 8.87 nT and 0.93 in the active period and 3.29 nT and 0.95 in the quiet period. Finally, the prediction accuracy of the LSTM model in the short time period was slightly better than the EMD-LSTM model. However, there will be a problem of prediction lag, which the EMD-LSTM model can solve and better predict the geomagnetic storm.

Funder

National Natural Science Foundation of China

Macau Foundation and the pre-research project of Civil Aerospace Technologies

Specialized Research Fund for State Key Laboratories

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Hourly values of equatorial Dst for the IGY;Sugiura;Ann. Int. Geophys. Year,1964

2. Problems and thoughts on the Dst index of geomagnetic activity;Wu;Adv. Geophys.,2022

3. A convected particle least square interpolation material point method;Tran;Int. J. Numer. Methods Eng.,2020

4. A review of deep learning research;Sun;Comput. Appl. Res.,2012

5. Long short-term memory;Hochreiter;Neural Comput.,1997

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3