Comparing the Ability of Burned Area Products to Detect Crop Residue Burning in China

Author:

Zhang Sumei,Zhao Hongmei,Wu Zehao,Tan Longda

Abstract

Burning crop residues is a common way to remove them during the final stages of crop ripening in China. To conduct research effectively, it is critical to reliably and quantitatively estimate the extent and location of a burned area. Here, we investigated three publicly available burned area products—MCD64A1, FireCCI 5.1, and the Copernicus Burnt Area—and evaluated their relative performance at estimating total burned areas for cropland regions in China between 2015 and 2019. We compared these burned area products at a fine spatial and temporal scale using a grid system comprised of three-dimensional cells spanning both space and time. In general, the Copernicus Burnt Area product detected the largest annual average burned area (37,095.1 km2), followed by MCD64A1 (21,631.4 km2) and FireCCI 5.1 (12,547.99 km2). The Copernicus Burnt Area product showed a consistent pattern of monthly burned areas during the study period, whereas MCD64A1 and FireCCI 5.1 showed frequent changes in monthly burned area peaks. The greatest spatial differences between all three products occurred in Northeast and North China, where cultivated land is concentrated. The burned area detected by Copernicus in Xinjiang Province was larger than that detected by the other two products. In conclusion, we found that all three products underestimated the amount of crop residues present in a burned area. This limits the ability of end users to understand fire-related impacts and burned area characteristics, and hinders them in making an informed choice of which product is most appropriate for their application.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Jilin Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3