Prediction of Surface Roughness of 304 Stainless Steel and Multi-Objective Optimization of Cutting Parameters Based on GA-GBRT

Author:

Zhou TaoORCID,He Lin,Wu Jinxing,Du Feilong,Zou Zhongfei

Abstract

Establishing and controlling the prediction model of a machined surface quality is known as the basis for sustainable manufacturing. An ensemble learning algorithm—the gradient boosting regression tree—is incorporated into the surface roughness modeling. In order to address the problem of a high time cost and tendency to fall into a local optimum solution when the grid search and conjugate gradient method is adopted to obtain the super-parameters of the ensemble learning algorithm, a genetic algorithm is employed to search for the optimal super-parameters in the training process, and a genetic-gradient boosting regression tree (GA-GBRT) algorithm is developed. A fitting goodness of fit is taken as the fitness function value of the genetic algorithm and combined with k-fold cross-validation, as such, the initial model parameters of the gradient boosting regression tree are optimized. Compared to the optimized artificial neural network (ANN) and support vector regression (SVR) and combined with the cutting experiment of 304 stainless steel with a micro-groove tool, a genetic algorithm multi-objective optimization model with the highest cutting efficiency and a supreme surface quality was constructed by applying the GA-GBRT model. The response relationship reveals the non-linear interaction that occurs between the cutting parameters and the surface roughness of 304 stainless steel that is machined by the micro-groove tool. As indicated by the results obtained from the multi-objective optimization, the cutting efficiency can be enhanced by increasing the cutting speed and depth within a small range of surface quality variations. The GA-GBRT model is validated to be reliable in making a prediction of the surface roughness and optimizing the cutting parameters with turning and milling data.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guizhou

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3