Validating UAS-Based Photogrammetry with Traditional Topographic Methods for Surveying Dune Ecosystems in the Spanish Mediterranean Coast

Author:

Bañón LuisORCID,Pagán José Ignacio,López IsabelORCID,Banon Carlos,Aragonés Luis

Abstract

In the past few years, unmanned aerial systems (UAS) have achieved great popularity for civil uses. One of the present main uses of these devices is low-cost aerial photogrammetry, being especially useful in coastal environments. In this work, a high-resolution 3D model of a beach section in Guardamar del Segura (Spain) has been produced by employing a low maximum takeoff mass (MTOM) UAS, in combination with the use of structure-from-motion (SfM) techniques. An unprecedented extensive global navigation satellite system (GNSS) survey was simultaneously carried out to statistically validate the model by employing 1238 control points for that purpose. The results show good accuracy, obtaining a vertical root mean square error (RMSE) mean value of 0.121 m and a high point density, close to 30 pt/m2, with similar or even higher quality than most coastal surveys performed with classical techniques. UAS technology permits the acquisition of topographic data with low time-consuming surveys at a high temporal frequency. Coastal managers can implement this methodology into their workflow to study the evolution of complex, highly anthropized dune-beach systems such as the one presented in this study, obtaining more accurate surveys at lower costs.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3