PSOTSC: A Global-Oriented Trajectory Segmentation and Compression Algorithm Based on Swarm Intelligence

Author:

Ouyang Zhihong,Xue Lei,Ding Feng,Li Da

Abstract

Linear approximate segmentation and data compression of moving target spatio-temporal trajectory can reduce data storage pressure and improve the efficiency of target motion pattern mining. High quality segmentation and compression need to accurately select and store as few points as possible that can reflect the characteristics of the original trajectory, while the existing methods still have room for improvement in segmentation accuracy, reduction of compression rate and simplification of algorithm parameter setting. A trajectory segmentation and compression algorithm based on particle swarm optimization is proposed. First, the trajectory segmentation problem is transformed into a global intelligent optimization problem of segmented feature points, which makes the selection of segmented points more accurate; then, a particle update strategy combining neighborhood adjustment and random jump is established to improve the efficiency of segmentation and compression. Through experiments on a real data set and a maneuvering target simulation trajectory set, the results show that compared with the existing typical methods, this method has advantages in segmentation accuracy and compression rate.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An algorithm for extracting similar segments of moving target trajectories based on shape matching;Engineering Applications of Artificial Intelligence;2024-01

2. Batch Simplification Algorithm for Trajectories over Road Networks;ISPRS International Journal of Geo-Information;2023-09-30

3. Real Time Adaptive GPS Trajectory Compression;Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics 2022;2022-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3