Artificial Intelligence-Based Recognition of Different Types of Shoulder Implants in X-ray Scans Based on Dense Residual Ensemble-Network for Personalized Medicine

Author:

Sultan HaseebORCID,Owais MuhammadORCID,Park Chanhum,Mahmood TahirORCID,Haider Adnan,Park Kang-Ryoung

Abstract

Re-operations and revisions are often performed in patients who have undergone total shoulder arthroplasty (TSA) and reverse total shoulder arthroplasty (RTSA). This necessitates an accurate recognition of the implant model and manufacturer to set the correct apparatus and procedure according to the patient’s anatomy as personalized medicine. Owing to unavailability and ambiguity in the medical data of a patient, expert surgeons identify the implants through a visual comparison of X-ray images. False steps cause heedlessness, morbidity, extra monetary weight, and a waste of time. Despite significant advancements in pattern recognition and deep learning in the medical field, extremely limited research has been conducted on classifying shoulder implants. To overcome these problems, we propose a robust deep learning-based framework comprised of an ensemble of convolutional neural networks (CNNs) to classify shoulder implants in X-ray images of different patients. Through our rotational invariant augmentation, the size of the training dataset is increased 36-fold. The modified ResNet and DenseNet are then combined deeply to form a dense residual ensemble-network (DRE-Net). To evaluate DRE-Net, experiments were executed on a 10-fold cross-validation on the openly available shoulder implant X-ray dataset. The experimental results showed that DRE-Net achieved an accuracy, F1-score, precision, and recall of 85.92%, 84.69%, 85.33%, and 84.11%, respectively, which were higher than those of the state-of-the-art methods. Moreover, we confirmed the generalization capability of our network by testing it in an open-world configuration, and the effectiveness of rotational invariant augmentation.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3