Formation of MXene-Derived/NiCoFe-LDH Heterostructures for Supercapacitor Applications

Author:

Guo Yihan1,Chen Tongxiang1,Zou Yongjin1ORCID

Affiliation:

1. Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

In this study, MXene-derived/NiCoFe-LDH heterostructures with three-dimensional interconnected porous network microstructures were prepared, leveraging the excellent electrical conductivity and growth platform provided by the MXene material. The remarkable specific capacitance of metal oxides was fully exploited. The composite exhibited high specific capacitance and excellent stability, with a specific capacitance of 1305 F g−1 at 1 A g−1 and a capacitance of 85.7% of the initial performance after 6000 charge/discharge tests at 10 A g−1. A two-electrode assembly was constructed using activated carbon as the negative electrode material corresponding to 49.5 Wh kg−1 at 800 W kg−1, indicating that the electrodes could achieve rapid charge/discharge. The findings of this study indicate that the composite material comprising LDH/MXene has significant potential for supercapacitor applications.

Funder

Guangxi undergraduate innovation and entrepreneurship training program

the Guangxi Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Reference52 articles.

1. Carbon peaking and carbon neutrality goals and reflections on China’s energy transition Part II—Fossil energy in energy transition;Zhang;Sino Glob. Energy,2022

2. High density anchoring of NiMoS4 on ultrathin Ti3C2 MXene assisted by dopamine for supercapacitor electrode materials;Xu;J. Alloys Compd.,2021

3. Static adsorption of MOFs nanosheets on 3D nanocubes for supercapacitor electrode materials;Sui;J. Alloys Compd.,2022

4. Review on supercapacitors: Technologies and materials;Goikolea;Renew. Sustain. Energy Rev.,2016

5. Synthesis of Porous Yolk-Shelled NiSe2–MnSe Heterojunctions for High-Cycling-Stability Asymmetric Supercapacitor Electrode Materials;Xu;ACS Appl. Energy Mater.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3