Assessment of Carbon Storage in a Multifunctional Landscape: A Case Study of Central Asia

Author:

Dong Xinyue1ORCID,Cao Zeyu1ORCID,Guo Yi1,Lin Jingyuan1,Yan Hanze1,Li Mengyu1,Yao Peng1

Affiliation:

1. School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China

Abstract

The robust carbon storage (CS) capacity of terrestrial ecosystems is crucial in mitigating climate change and holds indispensable significance for global sustainable development. The diverse topography of Central Asia (CA), comprising oases, grasslands, forests, deserts, and glaciers, has fostered industries like animal husbandry, irrigation agriculture, and mining. However, the fragile arid ecosystems of CA render it highly sensitive to climate change and human activities, with their impact on the sustainable development of multifunctional landscapes in this region remaining ambiguous in the future. This study linked land use changes with multiple socio-economic and ecological indicators to predict the dynamics of land use and changes in CS in CA. The findings reveal a significant spatial heterogeneity in CS, with considerable variations among five countries driven by differences in landscape composition. Kyrgyzstan and Kazakhstan, characterized by grasslands, demonstrate higher CS per unit area, whereas Turkmenistan, dominated by barren land, exhibits the lowest CS per unit area. Strategies involving innovative development and improved biodiversity conservation have proven effective in augmenting CS. Meanwhile, high economic and population growth stimulates the expansion of cropland and urban land, reducing the CS capacity of ecosystems. This study contributes to a more precise assessment of CS dynamics in CA. Furthermore, by elucidating the interrelationships between future socio-economic development and environmental conservation in CA, it offers solutions for enhancing the conservation of multifunctional landscapes in CA.

Funder

Natural Science Foundation of Beijing Province

Beijing Forestry University Science and Technology Innovation Plan Project

Hot Spot Tracking Project of Beijing Forestry University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3