An Optimization Study of Advanced Fenton Oxidation Methods (UV/Fenton–MW/Fenton) for Treatment of Real Epoxy Paint Wastewater

Author:

Balcioglu Ilhan Esra Billur1,Ilhan Fatih2ORCID,Kurt Ugur2ORCID,Yetilmezsoy Kaan2ORCID

Affiliation:

1. Chemical Oceanography Department, Institute of Marine Sciences and Management, Istanbul University, Vefa, 34134 Istanbul, Turkey

2. Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa, Esenler, 34220 Istanbul, Turkey

Abstract

The use of various advanced oxidation methods in the treatment of wastewater has become the subject of many studies published in recent years. In particular, it is exceedingly significant to compare these treatment methods for industrial wastewater to reduce environmental effects and optimize plant operations and economics. The present study is the first to deal with the treatability of real epoxy paint wastewater (EPW) using MW- and UV-assisted Fenton processes within an optimization framework. A three-factor, three-level Box–Behnken experimental design combined with response surface methodology (RSM) was conducted for maximizing the chemical oxygen demand (COD) and color removal efficiencies of ultraviolet (UV)/Fenton and microwave (MW)/Fenton processes in the treatment of the real epoxy paint wastewater (EPW, initial COD = 4600 ± 90 mg/L, initial color = 114 ± 4 Pt-Co), based on 15 different experimental runs. Three independent variables (reaction time ranging from 20 to 60 min (UV) and from 5 to 15 min (MW), power ranging from 20 to 40 W (UV) and from 300 to 600 W (MW), and H2O2/Fe2+ ratio ranging from 0.2 to 0.6 (for both UV and MW)) were consecutively coded as A, B, and C at three levels (−1, 0, and 1), and four second-order polynomial regression equations were then derived to estimate the responses (COD and color removals) of two distinct systems. The significance of the independent model components and their interrelations were appraised by means of a variance analysis with 99% confidence limits (α = 0.01). The standardized differences of the independent variables and the consistency between the actual and predicted values were also investigated by preparing normal probability residual plots and experiment-model plots for all processes. The optimal operating conditions were attained by solving the quadratic regression models and analyzing the surface and contour plots. UV/Fenton and MW/Fenton processes, which constitute combined Fenton processes, were performed using advanced oxidation methods, while Fenton processes were utilized as the standard method for wastewater treatment. When UV/Fenton and MW/Fenton processes were applied separately, the COD removal efficiencies were determined to be 96.4% and 95.3%, respectively. For the color parameter, the removal efficiencies after the application of both processes were found to exceed 97.5%. While these efficiencies were achieved in 1 h with a 38 W UV unit, they were achieved in 15 min with a MW power of 570 W. According to the RSM-based regression analysis results, the R2 values for both processes were greater than 0.97 and p values were less than 0.003.

Publisher

MDPI AG

Reference70 articles.

1. Characterization of paint industry wastewater;Oygun;Yüzüncü Yil Univ. J. Inst. Nat. Appl. Sci.,2018

2. Epoxy-based paints from glycolysis products of postconsumer PET bottles: Synthesis, wet paint properties and film properties;Bal;J. Coat. Technol. Res.,2017

3. May, C.A. (1988). Epoxy Resins: Chemistry and Technology, Marcel Dekker Inc.. [2nd ed.]. Revised and Expanded.

4. Wet air oxidation of epoxy acrylate monomer industrial wastewater;Yang;J. Hazard. Mater.,2010

5. Different methods applied to remove pollutants from real epoxy paint wastewater: Modeling using the response surface method;Adar;Sep. Sci. Technol.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3