Joint Task Offloading, Resource Allocation, and Load-Balancing Optimization in Multi-UAV-Aided MEC Systems

Author:

Elgendy Ibrahim A.1ORCID,Meshoul Souham2ORCID,Hammad Mohamed3ORCID

Affiliation:

1. Department of Computer Science, Faculty of Computers and Information, Menoufia University, Shibin El Kom 32511, Egypt

2. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia

3. Information Technology Department, Faculty of Computers and Information, Menoufia University, Shibin El Kom 32511, Egypt

Abstract

Due to their limited computation capabilities and battery life, Internet of Things (IoT) networks face significant challenges in executing delay-sensitive and computation-intensive mobile applications and services. Therefore, the Unmanned Aerial Vehicle (UAV) mobile edge computing (MEC) paradigm offers low latency communication, computation, and storage capabilities, which makes it an attractive way to mitigate these limitations by offloading them. Nevertheless, the majority of the offloading schemes let IoT devices send their intensive tasks to the connected edge server, which predictably limits the performance gain due to overload. Therefore, in this paper, besides integrating task offloading and load balancing, we study the resource allocation problem for multi-tier UAV-aided MEC systems. First, an efficient load-balancing algorithm is designed for optimizing the load among ground MEC servers through the handover process as well as hovering UAVs over the crowded areas which are still loaded due to the fixed location of the ground base stations server (GBSs). Moreover, we formulate the joint task offloading, load balancing, and resource allocation as an integer problem to minimize the system cost. Furthermore, an efficient task offloading algorithm based on deep reinforcement learning techniques is proposed to derive the offloading solution. Finally, the experimental results show that the proposed approach not only has a fast convergence performance but also has a significantly lower system cost when compared to the benchmark approaches.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3