A Virtual Direct Current Control Method of LCL-DAB DC-DC Converters for Fast Transient Response and No Backflow Power

Author:

Li Mingxue1ORCID,Li Zimeng1,Zhao Yushun1,Wang Zixiang1,Zhang Chong1ORCID,Feng Shuo1,Yu Dongsheng1ORCID

Affiliation:

1. School of Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

The LCL-type dual active bridge (LCL-DAB) DC-DC converter is a promising part for DC micro-grids due to its high voltage gain and low bridge current, but the issues of backflow power elimination and transient response optimization deserve attention in its operation. In this article, a virtual direct current control (VDCC) method of the LCL-DAB converter for fast transient response and no backflow power is proposed, which can eliminate the backflow power and improve the transient response against the input voltage and load disturbances. With dual-phase-shift (DPS) modulation scheme, the voltage-current characteristics are first analyzed using the phasor method. The small-signal mathematic model of the LCL-DAB converter is then established. The power characteristic is derived so the design regions of no backflow power can be graphed. On this basis, an appropriate outer phase shift ratio can be estimated to ensure a wide range of no backflow power operation. Moreover, a virtual voltage is generated to compensate in the control loop, thus the transient response against disturbances of the LCL-DAB converter can be improved under no backflow power. Simulation and prototype experimental results are presented to verify the feasibility of the proposed VDCC method.

Funder

the 2022 Postgraduate Research and Practice Innovation Program of Jiangsu Province

the National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3