Satellite-Based Monitoring and Modeling of Ground Movements Caused by Water Rebound

Author:

Malinowska Agnieszka A.,Witkowski Wojciech T.ORCID,Guzy ArturORCID,Hejmanowski RyszardORCID

Abstract

The presented research aimed to evaluate the spatio-temporal distribution of ground movements caused by groundwater head changes induced by mining. The research was carried out in the area of one of the copper ore and anhydrite mines in Poland. To determine ground movements, classical surveying results and the persistent scatter Satellite Radar Interferometry (PSInSAR) method were applied. The mining operation triggered significant subsidence, reaching 1.4 m in the years 1944–2015. However, subsidence caused by groundwater pumping was about 0.3 m. After mine closure, an ongoing groundwater rebound was observed. Hence, land uplift occurred, reaching no more than 29 mm/y. The main part of the investigation concerned developing a novel method for uplift prediction. Therefore, an attempt was made to comparatively analyze the dynamics of ground movements correlated with the mine life and hydrogeological condition. These analyses allowed the time factor for the modeling of land uplift to be determined. The investigation also revealed that in the next six years, the uplift will reach up to 12 mm/y. The developed methodology could be applied in any post-mining area where groundwater-rebound-related uplift is observed.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference44 articles.

1. Method for the measurement of antioxidant activity in human fluids

2. Finite element modeling of stress distributions and problems for multi-slice longwall mining in Bangladesh, with special reference to the Barapukuria coal mine

3. Subsidence: Occurrence, Prediction, and Control;Whittaker,1989

4. Soil Mechanics in Engineering Practice/Karl Terzaghi, Ralph B Peck, Gholamreza Mesri;Terzaghi,1996

5. Predicting Mine Water Rebound: Progress Reports;Younger,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3