Machine Learning-Based Rapid Post-Earthquake Damage Detection of RC Resisting-Moment Frame Buildings

Author:

Alcantara Edisson Alberto Moscoso1ORCID,Saito Taiki1ORCID

Affiliation:

1. Department of Architecture and Civil Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan

Abstract

This study proposes a methodology to predict the damage condition of Reinforced Concrete (RC) resisting-moment frame buildings using Machine Learning (ML) methods. Structural members of six hundred RC buildings with varying stories and spans in X and Y directions were designed using the virtual work method. Sixty thousand time-history analyses using ten spectrum-matched earthquake records and ten scaling factors were carried out to cover the structures’ elastic and inelastic behavior. The buildings and earthquake records were split randomly into training data and testing data to predict the damage condition of new ones. In order to reduce bias, the random selection of buildings and earthquake records was carried out several times, and the mean and standard deviation of the accuracy were obtained. Moreover, 27 Intensity Measures (IM) based on acceleration, velocity, or displacement from the ground and roof sensor responses were used to capture the building’s behavior features. The ML methods used IMs, the number of stories, and the number of spans in X and Y directions as input data and the maximum inter-story drift ratio as output data. Finally, seven Machine Learning (ML) methods were trained to predict the damage condition of buildings, finding the best set of training buildings, IMs, and ML methods for the highest prediction accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3