Sensitivity-Based Fault Detection and Isolation Algorithm for Road Vehicle Chassis Sensors

Author:

Na WonbinORCID,Park Changwoo,Lee Seokjoo,Yu Seongo,Lee Hyeongcheol

Abstract

Vehicle control systems such as ESC (electronic stability control), MDPS (motor-driven power steering), and ECS (electronically controlled suspension) improve vehicle stability, driver comfort, and safety. Vehicle control systems such as ACC (adaptive cruise control), LKA (lane-keeping assistance), and AEB (autonomous emergency braking) have also been actively studied in recent years as functions that assist drivers to a higher level. These DASs (driver assistance systems) are implemented using vehicle sensors that observe vehicle status and send signals to the ECU (electronic control unit). Therefore, the failure of each system sensor affects the function of the system, which not only causes discomfort to the driver but also increases the risk of accidents. In this paper, we propose a new method to detect and isolate faults in a vehicle control system. The proposed method calculates the constraints and residuals of 12 systems by applying the model-based fault diagnosis method to the sensor of the chassis system. To solve the inaccuracy in detecting and isolating sensor failure, we applied residual sensitivity to a threshold that determines whether faults occur. Moreover, we applied a sensitivity analysis to the parameters semi-correlation table to derive a fault isolation table. To validate the FDI (fault detection and isolation) algorithm developed in this study, fault signals were injected and verified in the HILS (hardware-in-the-loop simulation) environment using an RCP (rapid control prototyping) device.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3