Distributed Consensus Estimation for Networked Multi-Sensor Systems under Hybrid Attacks and Missing Measurements

Author:

Cheng Zhijian1,Yang Lan1,Yuan Qunyao1,Long Yinren1,Ren Hongru1

Affiliation:

1. School of Automation, Guangdong-Hong Kong Joint Laboratory for Intelligent Decision and Cooperative Control, and Guangdong Provincial Key Laboratory for Intelligent Decision and Cooperative Control, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Cyber-security research on networked multi-sensor systems is crucial due to the vulnerability to various types of cyberattacks. For the development of effective defense measures, attention is required to gain insight into the complex characteristics and behaviors of cyber attacks from the attacker’s perspective. This paper aims to tackle the problem of distributed consensus estimation for networked multi-sensor systems subject to hybrid attacks and missing measurements. To account for both random denial of service (DoS) attacks and false data injection (FDI) attacks, a hybrid attack model on the estimator-to-estimator communication channel is presented. The characteristics of missing measurements are defined by random variables that satisfy the Bernoulli distribution. Then a modified consensus-based distributed estimator, integrated with the characteristics of hybrid attacks and missing measurements, is presented. For reducing the computational complexity of the optimal distributed estimation method, a scalable suboptimal distributed consensus estimator is designed. Sufficient conditions are further provided for guaranteeing the stability of the proposed suboptimal distributed estimator. Finally, a simulation experiment on aircraft tracking is executed to validate the effectiveness and feasibility of the proposed algorithm.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3