Abstract
This study highlights the C O 2 , e -emission reduction potentials and related economic consequences for changing steam generation from fossil to renewable. Seven different utility concepts are developed, including a steam accumulator for load management. Peculiarities for the integration of biogas boilers, biomass-fuelled boilers, electrode steam boilers, biomethane-fuelled solid oxide fuel cells, micro gas turbine, solar energy systems, heat pumps and steam accumulators into a steam system with fluctuating steam demand are explained and the energy balance based models for the simulation study are described. The characteristics of batch processes, start up times and part load efficiency are considered via an annual dynamic simulation. Based on a detailed process analysis and dimensioning of the utilities and the accumulator a comprehensive simulation study is conducted for a pet food processing company having an average steam demand of 18,000 MWh at around 9 bar and 3 t/h. The results show that the highest C O 2 , e -emissions reduction of up to 63% is achieved by the transition to a solid biomass-fuelled boiler system. This leads to an increase of the operating costs by 27.8%.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference63 articles.
1. A Roadmap for Moving to a Competitive Low Carbon Economy in 2050,2011
2. Facts and figures Energy Data: National and International Development [In German: Zahlen und Fakten Energiedaten: Nationale und Internationale Entwicklung],2018
3. Synergies between Renewable Energy and Energy Efficiency: A Working Paper Based on Remap 2030,2015
4. A comparative assessment of electrification strategies for industrial sites: Case of milk powder production
5. Inter-fuel substitution in European industry: A random utility approach on industrial heat demand
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献